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ALMOST SURE CONVERGENCE OF ADAPTIVE IDENTIFICATION

PREDICTION AND CONTROL ALGORITHMS
by

Rajendra Kumar

ABSTRACT

The paper is concerned with the almost sure convergence of the

adaptive parameter estimation, N-step ahead prediction and control

algorithms based upon standard least square algorithm. With the usual

stability and passivity assumptions for the prediction problem, it is

demonstrated that the state estimation and the N-step ahead prediction

errors converge to the optimum such errors achievable with known plant

parameters, in the Cesaro sense. An additional regularity assumption on

the signal model establishes the result that the state estimation and

prediction errors also converge in the strong sense at an asymptotically

arithmetic rate. Under an additional persistency of excitation condition

it is shown that the parameter estimation error converges to zero at a
4!

rate specified by the degree of excitation. The persistency of excitation

condition being of a trivial nature is also a necessary condition for

parameter convergence. With the regularity condition holding, the con-

vergence is also established for the adaptive control algorithms, e.g.

self tuning regulators under the usual minimum phase restriction on the

plant. In this case the tracking error equals the N-step ahead prediction

error and thus converges to its optimum value at an asymptotically

arithmetic rate.



1. INTRODUCTION

The paper is concerned with the almost sure convergence of the

adaptive parameter estimation, N-step ahead prediction and control algo-

rithms based upon standard least square algorithm. With the usual stability

and passivity assumptions for the prediction problem, it is demonstrated

that the state estimation and the N-step ahead prediction errors converge

to the optimum such errors achievable with known plant parameters, in the

Cesaro sense. Under an additional regularity assumption, the convergence

of these errors and also that of the tracking error for the adaptive con-

trol, is shown to be in the strong sense and at an asymptotically arithmetic

rate. An additional persistency of excitation condition of a trivial

nature also establishes the parameter convergence.

In [1-6] the convergence analysis for the parameter estimation

algorithm focuses mainly on the consistency and asymptotic properties

of the parameter estimation errors. Of these the most recent work [2]

establishes parameter convergence and also the convergence of the predic-

tion error for the stochastic approximation algorithm using projections

under relatively weak assumptions for such a convergence. Being concerned

with establishing the parameter convergence, such analysis is bound to make

assumptions which are not necessarily satisfied under situations where the

parameter estimation is not the central issue, for example, in the case of

adaptive prediction and control problems, see for instance [3,4].

Guided by this rationale, the work of [7-10] takes an alternative

approach wherein the emphasis is placed on the convergence of the predic-

tion error in the case of N-step ahead prediction problem or that of the

tracking error for the case of adaptive control. In most of these refer-

ences the issue of parameter convergence is completely ignored except in



[71 where simultaneously some results on the paraeter convergence are also

established. An important condition that emerges out from the analysis of

[4-11] is that a system related to the signal generating system or fre-

quently just the noise generating system be passive. In [II unrealistic

assumption on the adaptive predictor termed "persistency of excitation"

condition are also made to derive convergence. The analysis of [4] essen-

tially ignored the global stability problem and dealt with the local

behavior only, when dealing with the adaptive control problem.

In [8] for the adaptive control problem, a scheme based upon stochastic

gradient type of parameter estimation algorithm has been proposed along

with its global convergence analysis, thus generalizing the earlier deter-

ministic results of [14]. In [7,9,10] statistically more efficient algo-

rithms based upon modified least square parameter estimation schemes have

been proposed for the adaptive control and prediction problem. The modifi-

cation in [9] is based upon the condition number check of a certain matrix

so as to ensure convergence. In [7] the modification is based upon a

stability measure and thus a weighted least square algorithm rather than

the standard least square algorithm is used to ensure convergence. The

N-step ahead prediction schemes of [10] use a bank of N least square

parameter estimation algorithms to ensure global convergence. The

4- convergence in all these references is established in the Cesaro sense.

The above schemes of [7-10] leave the question unanswered as to

~whether or not the schemes based upon the standard least square algorithm

converge, without any modification, whenever the modified schemes do so.

The question is of more than academic interest. Whereas the schemes of

1101 involve extra complexity, which is not marginal, the ones of [7] have

the problem that these afford more weight to the past measurements and

'p.
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thus the adaptation of these algorithms to time-varying plants and the

generalization of the convergence results may pose problems. In practical

implementation, of course, this problem can be avoid(I by several possible

schemes of ad hoc nature. Furthermore all the schemes to date with the

exception of [2] establish convergence only in the Cesaro sense and thus

leave open the possibility of the divergence to infinity of a subsequence

of the prediction/tracking errors or even the plant input-output sequence

in case of adaptive control. The schemes also ignore the parameter con-

vergence except in [7] where only partial results on this issue appear.

The convergence analysis of this paper uses the standard least square

algorithm for the parameter estimation and thus the results contain the

convergence of the self-tuning regulators of [15,16], adaptive predictors

of [17] and the adaptive Kalman prediction schemes of [11] as special cases.

The distinctive feature of the analysis of this paper is that whereas in

the absence of any regularity condition, convergence of the prediction error

is established in the Cesaro sense, the regularity condition implies the

convergence in the strong sense and asymptotically at an arithmetic rate.

Furthermore, this strong convergence of prediction/tracking error is not a

sufficient cond:tion for the parameter convergence. However, an additional

condition of a trivial nature also establishes the parameter convergence

and its rate of convergence. The condition is trivial because in its

absence one cannot expect parameter convergence with any algorithm, when

noise is present in the measurements. It also emerges out from the theory

that the convergence of parameter error need not always be at an arithmetic

rate. In fact it could be slower depending upon the excitation, for

example, at a logarithmic rate.

3 ~ ' i I ' - .. ''
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In Section 2, various algorithms, convergence conditions and the

notations are introduced. The global convergence analysis is presented in

Section 3 both for the adaptive N-step ahead prediction and the adaptive

control problem. Some concluding remarks are made in Section 4.

2. DYNAMICS OF MODEL, ALGORITHM AND ESTIMATION ERRORS

Although the problem of one-step ahead prediction forms a special case

of the N-step ahead prediction problem, for clarity of presentation, the

two are treated separately in this section. This is so because the anal-

ysis of the N-step ahead prediction/control algorithm makes direct

application of the results derived for the one-step ahead prediction/control

problem. The development of this section follows closely that of [7].

Model Dynamics: For the adaptive control of the plants without a pure

delay or for the one step ahead prediction problems, we consider the

following multi-input multi-output model,

Xk+l = (F +Gle')x k + G2W k +f(uk,zk) (2.1a)

Zk = 8xk + Wk (2.1b)

where uk, zk and xk are the inputs,,outputs and the states of the model.

The matrices F, G1, G2 and the functions f are assumed known with the

parameter matrix 8 and the states Xk unknown. The noise wk is a

zero mean white process or more precisely is a martingale difference

sequence satisfying

E[w k/F kl] = 0 , E[IIwk11 2/Fk-l] % a2 < (2.2a)

k
lnm sup - Iw~iI 2 < a.s. (2.2b)

AJk-o 1=0
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where Fk  is the minimal a-algebra generated by w, ... 1Wk. As shown in

[7,8], this model includes multi-input multi-output ARMAX model with

exogeneous inputs and also the innovation models.

When the plant to be controlled has a delay of less than (N+I)

units or when the N-step ahead prediction problem is considered, then a

model of sufficient generality is the following,

Xk+N = Fxk+N_1 + GIe'Xk + G2n k + f(ukZk) (2.3a)

.k = E'X k k nk = Wk + QOk-i + ""+ QN-2k+-N (2.3b)

with wk satisfying (2.2). The actual values of the matrices Qi are

not of interest in the following and F, GI, G2 are again assumed known.

For the ARMAX models these merely have as their elements, 0 and 1.

State and Parameter Estimators The state estimator for the model (2.1)

is given, for some estimate 0k of the parameter matrix e at time k,

by

x k~l = (F+G eO)xk + G2 k/k + f(ukzk) (2.4a)

Zk/k Zk k k (2.4b)

and similarly for the model (2.3). The N-step ahead prediction of

zk+N is given by

z k+N/k = 0k+N (2.4c)

The parameter estimation algorithm considered here is the standard

least square algorithm for both the one-step and N-step ahead predictors/

controllers,
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k k-i +kPk k/k-i (2. 5a)

Zk/k-I k - k (2.5b)

+ rk = trace (2.5c)

or

Pk = k-1 Pk-l k (' + Xk k-lk)-lkk-1 (2.5d)

State and Parameter Estimation Error Equations For the one-step ahead

prediction/control situation, the equation for the state estimation error

Xk A -Xk is obtained from, (2.1), (2.4) and can be reorganized as

Xk+I = (F+G')x + Gqk q, ' (2.6a)

k k + 2 ekxk (2.6b)

The need to reorganize the Xk generating system in this manner, will be

apparent in the sequel. Similarly for the N-step ahead case, one obtains

RXk+N  = Fk+N_ 1 + G(p k + I qk )  (2.7)

with Pk and qk same as in (2.6). The parameter estimation error

ek = e-e k obtained from (2.5) is as follows.

ek =ekl 6 § -~ ~(2.8a).k k k-1 k k/k-i k k-1 k-i k'k/k

= + '~+ , = e~ + + ~(2.8b)"k/k-i k + @k-Ik + 'k 'k/k = 'k + 6kk + wk

Passivity Condition As is common in literature [4-11], we make the

assumption that the system (2.6a) or (2.7) with input qk and output Pk

is strictly input and strictly output passive. Thus for some K>0, C>0f



and all integers m,

m m m m
pq -+ E k , pEq I 1 2  (2.9)

k ' Z1pk1! k >' 2 k 290 0 0 0

We also require that the states xk of the system (2.6) or (2.7) are

1bounded in terms of (Pk + T qk)  For the ARMAX models this is trivially

satisfied since the matrix F has all of its eigenvalues at zero. For other

models in addition to the input-output exponential stability implied by

(2.9) we require that the matrix F in (2.6) or (2.7) has all the eigen-

values inside the unit circle. Thus

K P + , q + K some K < O (2.10)
00

As shown in [18] the passivity condition (2.9) is equivalent to requiring

that the transfer matrix {[I-z(N-)e'(zI-F) -I- I  is strictly

positive real. In single-input single-output ARMAX model case and for

N = , te coditon i wel knwn nd rquies tat c-l~ -1 ) -1b

strictly positive real. Here z denotes the Z -transform and C(z - )

denotes in the Z-transform notation, the moving average polynomial

associated with the noise k"

Stability/Minimum Phase Condition: For the open loop prediction problem

we require that for some K and all m>m, m being a finite integer,

4 m1mI~k <
2  K (2.11)

0

For the closed loop adaptive control we require that the trajectory

z k is bounded and the following minimum phase condition is satisfied.

(For the N-step ahead case first sum in (2.13) has upper limit m-N.)

t
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] Zkl2 K , m - m for so:ie K < (2.12)
m0

-m m m
K j ! lx12: 11 112+ -, for some K(, K < - (2.13)
m0 k m0 k m0 k

For the interpretation of (2.13) in terms of exponential stability and the

complete observability/reachability of the inverse plant one may refer to

[7].

For the convergence of the state estimation error and the N-step

ahead prediction error in the Cesaro sense, in the case of N-step ahead

prediction schemes, the assumptions so far made are sufficient. However,

for the adaptive controller these assumptions turn out to be inadequate to

establish the convergence of the tracking error to its minimum value. This

problem has been addressed in [7] where a modification of the algorithm

by an appropriate sequence of weighting coefficients, ensures convergence.

In [9] an alternative scheme based upon the condition number of a certain

matrix has also been proposed. However, both these schemes prove the con-

vergence in the Cesaro sense and thus leave open the possibility of a

*subsequence of tracking errors diverging to -. Secondly these schemes

do not provide any analysis as to when the standard least square algorithm

converges. Furthermore, whereas in [9] the problem of parameter conver-

gence has not been addressed at all, the condition in [7] required for

parameter convergence is of implicit nature. This is so because the con-

dition in [7] is dependent upon the specific weighting sequence selected

during a particular realization of the process.

This is a realistic problem in view of the fact that one is considering
possibly unstable plants and in real life situations, nonlinearities due
to saturation can lead to overall divergence. In particular, such a
divergence can result if, even in the absence of nonlinearities, a
subsequence of plant signals could have high magnitudes.
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In this paper we make an assumption termed the regularity condition

on the signal model as follows.

Regularity Condition

1 k  k
lim inf = x.x > I for some > 0 = x!x. (2.14a)
k- r k 0 10

r k+l
lim sup r < (2.14b)

rk

Remark 1. Condition (2.14a) is a restriction on the condition number of

the "covariance" matrix associated with the signal model. This condition

is expected to be satisfied if the model has some type of exponential sta-

bility and is driven by persistent inputs. For ti-c- adaptive control

problem, however, (2.14) needs to be interpreted in terms of zk and wk'

(See the remarks at the end of Section 3 in relation to 2.14.)

3. CONVERGENCE ANALYSIS

The convergence results are presented as three separate theorems. As

the analysis of the N-step ahead predictor/controller makes direct use of

the results for the 1-step ahead predictor/controller, the latter are

presented first in the form of Theorem 3.1 and 3.2.

Theorem 3.1: Consider the plant and the least square estimation

scheme of the previous section with noise condition (2.2a). Then, under

T 1I
The x.x' actually equals the covariance matrix of xk

k--ar 0
provided that xk is ergodic. Here, even though xk is not ergodic we

are referring to this matrix as "covariance" matrix.

- ,"t b .. 1 : f I " , . . ,
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the passivity condition of Section 2,

A.

(i) rkl 1Zk/k wkI2 < a.s.
k=O

(ii) L rkxPi IIZk/kL 2 < a.s.
k=O

(iii) r k 1ik12 < a.s.
k=O

Further, under the additional condition (2.14) one obtains (3.la-d) below,

wherein the condition (2.14b) is required only for the result (3.1d) and the

result (3.1a) is also valid with rk replaced by rk. For any arbitrary c >0,

B.

(i) lim sup tr{r 0,', 0 < a.s.

lim sup r(1 -  6l[k 2 < a.s. (3.1a)
k-k

lim rk = lir 1 k 0 a.s.
k- o k-w-o

" (ii) k 1 IZk/k-k < a.s.

(3.lb)

L rkc 2[xkl < a.s.
k=O

".Iii r !-E)  116k - 112 <  .0 a.s. (3.1c)
k=O 1- kI-

k0

(iv) r lZk/ k - 2 < a.s. (3.1d)
k=0

t

'.4
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Proof: Define Vk by

V tr(e P ekl} 6 k + {I [26ip~qi - c6i( Iqi 11 2 piI I 2 )] + C} (3.2)

0

where K and c are the constants appearing in (2.9), {6 k } is some
- 1 -i nd =e~ k

monotone nonincreasing sequence, Pk = k +2 kqk

Now Vk , 0 due to the passivity condition (2.9) and simple manipulations

similar to those in [7] yield that

E[Vkgkl] Vk-l + E[rk- 2wqkqkFkl] - £6kE[Ijq k 2 + I]pk J[Fk-l] (3.3)

where

A = tr{OP + 2 6  'q }6

Sk kk k-l k-i - (k+k

with

A 6k k k2

k k k-lk k/k

The latter equality follows from a substitution of 6k 1  from the secondk-i

part of (2.8a). Also from the definition of qk and the first part of

(2.8a),

*;, E[26kw.qkIFk_1  = IFkE[E IkrlJ ]  = I

26 E[ 21F(3.4)
k kxkPkxkE[ IIwk I 2 Fk-1 ]

The substitution of the above expressions in the second term on the right-

hand side of (3.3) yields

E[VkIFk- 1]  < Vkl E6kE[IIqk112 Ipk112 Fk-l] + Bk -n k  (3.5)

Or with Vk = Vk + e6k(Ilqk1l2 + 1Pk!12) + nk

pr



12

E[VkIFk-11 < Vk-1 c6k-l(lq k-l112+ 1Pk-1 !2 ) + Bk - nk-1 (3.6)

Now to derive the results A of the theorem, make a specific selec-
-l

tion for 6k, namely 6k = r k  Result (i) of Lemma A2 of the Appendix

then yields I Bk <- and in view of the positivity of Vk and Bk, the
0

application of the martingale convergence theorem [21] implies that Vk

converges almost surely and nk <, lpl 2 ' <-, -Iqk" I rk <- a.s.
0 0 0

Thus with the application of second part of (2.8b) and the definition of

nk yields

-1 2 - 1r1 - ! 2 +4 12) < - a skl 11k/k- wk 112  1 r k Pk k q I 2 k ! (qk 1! +4Pk~l < ® as
0 0 0

(3.7)

o[ rkkPk1lklzkkII < w a.s.

0

This establishes (i) and (ii) of result A. Now from the bounded input-

bounded state property of the system, (2.10), it follows that

0r kIXkJ12 < a.s. (3.8)
-. 0

To see this note that the system (2.6a) can be rewritten as

r- 1/2 -1/2 ] 1/2 + -i12 i12 -/2 1
k+l k+1 k l rk  k k k+l k k (Pk+ qk

has a bounded input-bounded state property. An intermediate step to

achieve this is
k k
1t IrkT-i/2 F k-i r-i/12 "<  1 JIF lk-i "< K <

0 1 0

Now to derive the results B of the theorem, it is easily seen that,

p

hJ
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XkX 2i i + 2X'

kx k< k k

orPI
or xXkXk Xkk (3.9a)

and also

rk  k k
k > - Ilij k " 2rk + 2 j 0 1 jl

j =0rk--0

Application of (3.8) and the Kronecker lemma then implies the existence of

an integer m1  for any given e1 >0 such that

rk 1 < 2 + c for all k >, m1  (3.9b)

r k 2 1' r 1

Inequalities (3.9a,b) imply that

k ~, > 1k krk - £1 Xx x.x!!- x.x for k > m

rk j=O 13 1 Y l k j=O 3 2 rk j=

The condition (2.14a) of Section 2 implies that there exist an m2 >, m1

such that the first term on the right-hand side of the above inequality

> 2c2I for some E, > 0 and for all k > m ,. An application of (3.8)

and the Kronecker lemma implies that

-- .xX C 2 1 k >m 3 , for some m3 .m 2  (3.10)rk j=O0

In other words Xmin  k 2rk for k m 3

or Xmax Pk E 2 r k for k > m3  (3.11)

Appealing again to (3.5), (3.6) with 6 rk for some c > 0 andk k

now defining

Ik - k - - 2

Sk - tr(i P rk} + { [2riK pqi - r (Ilq.i 12  tIp i 12)] + K11kk kk 3  1 1 1

for some 0 I K < C 0

F.
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and

Sk =Sk + CTkk (Jq k I 2 + 11Pk 1 2  + k

k = k kxkER 1wk k-11kk = rkxkPklx .k/k _ 2ll

yields that for k 3

E[SkIFk-] SkI - Cr k((q10 t2 + "Pk 112 )  6k -; k-l (3.12)

Application of (3.11) and the lemma Al yields that I Rk < - and
k=m 3

Sk > 0 as before. The martingale theorem is once again applicable and

thus Sk converges a.s. and I rkEl!pk 12 < - and I rkIlqkI12 < .. In
m3  m3

a manner we obtained (3.6), (3.7), we also get the result

k < -O a.s. (3.13a)

m3

Alo"sal h ersi k ar=ostv, ehvetak v

El s 112

ur sup rk e'Ple < O a.s. (3.14)

4-k- k kk k

% ,k = k-

. which proves part a of result (i). With the application of (3.11), part a

of result (i) implies (ib). Since all the signals are finite for finite k,

p the lower limits in (3.13) can be replaced by 0 thus yielding part (Bii)

of the theorem. Similarly the application of (3.11), (2.8a), (3.13a) and
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definition of nk yields that

1- ^ 6k~lk9 lH < a.s.
k=M3

As commented before, the lower limit can once again be replaced by 0

thus implying (iii).

Now from (2.4b), (2.5b), notice that

Zk/k_ 1 = Zk/k + (k- k-1) xk

Taking norm square on both sides and applying part (i) of the theorem's

result B,

CO - C - CO m4 -I0 WI 0 2 lk2~ k/k-wkII2+ 2 K1 1k+k +2X4-1 §-l X!I r k Ilik/k- 'k k kk-' ICk -
0 0 k=m4 rkl 0

for some 0 < i < - and some finite integer m4 . Application of (2.14b)

and (3.9b) shows that for m 4  sufficiently large, rkl in the second

sum on the right-hand side can be replaced by rk. Application of Lemma Al,

(3.1b) and the arbitrary nature of e establishes (3.1d). Further the

arbitrary nature of e, implies the strong convergence of various error

terms to zero. Also in view of (3.9b) rk can be replaced by rk in (3.1a).

vvv

Under the regularity condition (2.14) of the signal model, the

results B of the theorem are end results in themselves. In view of the

arbitrary nature of c, these imply that the one step ahead prediction

error z k/k- 1 , which is equal to the tracking error for the adaptive con-

troller, converges to wk at a rate 1/k. Also for the prediction problem

the estimation error xk converges to zero at a rate 1/k. Furthermore

if rk as k approaches -, then the parameter error [[6k0l converges
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to zero, the rate at which this error converges is given by lI/rk or

with the application of (3.9b) by l/rk. Moreover, the parameter conver-

gence does not require (2.14b). To obtain the result that the inputs and

outputs remain bounded for the adaptive control situation, we exploit the

minimum phase restriction on the plant.

In the absence of regularity condition (2.14) the results A of the

theorem cannot be extended to conclude the convergence of Zk/k-l or that of

the tracking error for the case of adaptive control in any sense. For the

prediction problem, however, these do denote some kind of convergence of

the estimation error xk' With the stability assumption (2.11) on the

signal model, as shown subsequently, the result (Aiii) of the theorem also

implies the convergence of state estimation error Rk to zero and that of

the prediction error z k/k- 1 to wk in the Cesaro sense.

Both the sets of results are given in the form of theorem 3.2.

Theorem 3.2. Consider the adaptive schemes of Section 2 under the

passivity condition of the theorem 3.1, the noise condition (2.2a,b), and

the stability assumption (2.11) for the adaptive prediction schemes, or

under the bounded trajectory condition (2.12) and minimum phase condition

(2.13) for the adaptive control schemes. Then the result A below holds

for adaptive predictor in the absence of (2.14)

A.
1 

k

(i) lim sup Nll 2 <  a.s. (3.15a)
k- 0

k
(ii) i. 1 0 i. s

k (3.15b)

lim llii 2 = 0 a.s.
k-. 0
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(iiilir XPk-i xk -0 a.s.

(3. 15c)

YI II(0k -k1 k I 1k < Oas

(iv) li j n/ Wl' = 0ld

Further, under the regularity condition (2.14a) holding, then for any

c >0, the results (ii) and (iv) in A can be strengthened to (3.15e) (for

either the adaptive prediction or control scheme), where the last part of

(3.15e) also requires (2.14b).

B.

0 k k/kwkIa

SkE xk 112 < a.s. (3.lSe)

I k-6 Zk/k-i -.wk 11 < a.s.4
0

Also for the case of adaptive controller with (2.14) holding, the states,

inputs and outputs of the plant remain bounded.

C.
I k

(i urn sup - jlx jj2  < a.s. (3.15f)
k- k0

k
(irnli sup - a. s.

k0

Proof: Considering the case of adaptive prediction first, the application

of the Kronecker lemma to result (Aiii) of Theorem 3.1 yields
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ur 5i1n2  0 (3.16)
k-- r k 0

Now the application of Iii 2 < 21xi11 2 +2Ili,1 2 , and (2.11) results in

1k K2k

o i - i + O- 2 , 0 < K2 < - 3.17)

Taking inverse on both sides of (3.17) and multiplying the resulting in-
Ikequality by I x likill 2 on both sides

k k k k{Y. li~l2T- 1 [ 11-i112 > - + 2} k

0 0 0

k

This inequality implies that lim sup Ii1[2< a.s., for otherwise

taking limits for a subsequence, there is a contradiction that 0>. I, thus

establishing (3.15a). Substitution of (3.15a) in the results (Ai,iii) of

Theorem 3.1 and the application of the Kronecker's lemma yields (3.15b).

First part of (3.15c) follows from the result (ii) of the lemma A2. Now premul-

tiplying second part of (2.8a) on both sides by x. and taking norm square yields,

r - '( k 1 112  < 1 k (zk 112 -
" rkl llXk(bk - 0 k-1) 2 ( klXk) [XPk-Xkrk iZk/k
0 0

Now as Zik/k_ 112 < 211 -k/k 1l12 +2 11(6k - 6kl1 "l k 112 , application of the

result (Aii) of Theorem 3.1 and the first part of (3.15c) then gives the

desired result (3.15d) and the second part of (3.15c) in view of (3.15a).

For the case of adaptive controller as shown in [7] for the weighted least

*! square scheme, one obtains

I k 1C 2 k

0 0

P Further the application of the Kronecker's lemma to (3.1d) yields

t., ... :-i i: . : z -: ii :i" " 17 ' " "
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k

lia rk I Ili i/i_- WiJ1 2 = 0 which combined with the above inequality,k-* 0

once again yields (3.15a). The application of (3.15a) in (3.1b,d) then,

results in (3.15e). Applying IIxif12 < 2Ji 11i2 + 21li 112 , (3.15a) and the

second part of (3.15b) establishes (3.15f). The first part of (3.15g)

follows from (3.1Sf) and the minimum phase condition (2.13) whereas the

second part is implied by (2.1b), the noise condition (2.2b) and (3.15f).

Result B for the adaptive predictor follows by substituting (3.15a)

in (3.1b,d).

-VVv

N-Step Ahead Prediction Schemes The convergence analysis of N-step ahead

prediction/control schemes essentially involves the decomposition of the

problem into N one-step ahead prediction/control problems. The direct

application of the results of Theorem 3.1 and 3.2 then yields the desired

convergence results.

Theorem 3.3: Consider the N-step ahead prediction/control schemes of

Section 2 under the noise condition (2.2), passivity conditions (2.9),

(2.10) and the minimum phase/bounded trajectory conditions (2.13), (2.12)

for the closed loop adaptive control or the stability condition (2.11)

for the open loop prediction schemes. Then in the absence of condition

(2.14), the results A below hold for the N-step ahead predictor,

A.
k

(i) lim sup 1 xI fIiI!2 < a.s. (3.18a)
k-- k 0

kk(ii) lim cn dii - n in 12 (0 a.s. (.18b)
k-- i=O

Further, when the regularity condition (2.14) is satisfied, then for both
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the prediction and adaptive control schemes, one also obtains for an

arbitrary e > 0,

B.

(i) li~m sup r~l)1kl a. s.

(3. 18c)

lr rk =:P lrn !O~ 0 a.s.

(ii) 2 ~j~~ < a.s.
0

CO -(3. 18d)

k- / -n k j2 < a.s.

(iii) X k-c1 II k-k -n k112 < 00a.s. (3.18e)
0 1-

where part b of (2.14) is required only for (3.18e). Result (3.18c) is

also valid with r k replaced by r k'

For the N-step ahead adaptive controller, the plant states, inputs

and outputs are also bounded, i.e.,

C.k
urn sup I~ I jlx~iI 2 < _a.s.

0

*k

urn sup T l~I a.s. (3.18f)
k-- 0

Tr su l iziII2 < a. s.

Proof: Following the procedure of [7,18], the error terms xk 6 (2.7,2.8)

are decomposed into N fictitious values as -() (N ()()Xk .. Xk k k

with the properties x k xk i ki, e oral k hr
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k k-i k k k/k-i 31a

k k-(I - kikzk/k (3. 19b)

-k/k -l k Ok-i Xk + Qi- 2wk+l-iQ-l I (3.19c)

and

i) Fi(i)_ + G (O'ji) + )0" (3.19d)k+N k+N-1 k k k)

- Mi i IDefining function W)by replacing q by 6(',k andq
k k'k k k

respectively in the obvious notations, in (3.2) and in the equation for V k

one has the property that E[(4I = k-(' E A IlFki = 0, as

x kb P k x kE F k- F kifor i = 1,2,...,N. Working with N supermartingales

{()F I, then an analysis similar to that in Theorem 3.1 yields that
k 'k-i+l

11rJ 'k/k -Qi- 2wk+l-ifll' as
.-0

(3. 20a)

k0

kok k k-l k -k/k''

From (3.20a), by application of the inequalit !xkl N IxiI2 and
'ty k k

the Kronecker lemma, one obtains

k
lrn -L Y'~~ a.s. (3.21)

k-*= rk -

4 The application of stability condition as in Theorem 3.2 yields that

urn sup I 1ii1 < a.s., thus establishing (3.18a). This result, its
k- 0
consquece hatlimx'P lx 0 a.s. (see lemma A2), (3.19b) and

k- kl
(3.20b) then yield,

VL
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Sk- l !16i - 6 i )~ 'k̂ 2 < a. s.

0 k k-i k'

kM

or lim I i(( - (i) 2 0 a.s.
k-)cm j=0 j i

Also from (3.19b),

_ (i) M 1i ) 2 1 ;2 -1 ( 12
N 1  k.k. J I--/k-1

for all i, j and N1 <

From Lemma A2, lx' PkX 0 as k -- for all finite i and i.

Thus IXVPk-jIXk-j < E3 for all k >, N2 and any given E3 > 0, N2

being some finite integer. Thus for N > N2

1  2 2

N--I~~ ~ ! k kj j ~k- j -i~k-jl2 k-(i
kk-j =- _k j/k- j I

E:3 N I
+ k-j/k-j II2(3.22)
N2+1

Now k-ji k-j -( )f212 < 2 2k~1i2 112] 12

Now k-j/k-j 1  -k-f/k- - Qi- k.k-i+l-i +2Qi-2 lk-j+l-i

Application of (3.20a) and the noise condition (2.2b) in (3.22) yields, in

view of arbitrary nature of £3

N

lin sup 1. k-j 2 0 a.s. (3.23)

Now as

"k/k-N Zk/k + k- ek-N)xk (3.24)

one obtains
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11 11 1 1

SIkl 1/-N k NJ I~ ~ = N ~ -

thus giving the desired result (3.18b) from (3.18a), (3.20a) and (3.23).

To establish result B, proceeding as in the proof of Theorem 3.1,

under the regularity condition (2.14a), r k Iin (3.20) can be replaced by

r- to obtain
k

r= k- 1k/k i-2 ok+l-i 12<as
k=O (3. 25a)

X r-C 1 1 pi 12 < a. s.
k=0 k k

also implying that

SrJ( 11kI2 < cca.s.

k=0 "

(3. 25b)

r -(i -n 112 < a.s.
&k=0 k k/k k

Now the result that lrn sup t{(i) ' <- a~. ori=I,
- k-~ trwek k k as. fr il

im 2, . .. , N and the inequality (3.11) following from (2.14a) and the first

part of (3.25b) establish (3.18c).

Now the condition (2.14b) and (3.9b) which results due to the first

part of (3.25b) as in the proof of theorem 3.1, imply that

- K fral k>N 0 < K3 c N 3a finite integer (3.26)

* k-l

Subtracting n k from both sides of (3.24) and taking norm square on both

sides, then application of (3.18c) yields

'I,
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N-111 Zk/kN-nk~l (N+I) 1 i k/k-n kn2 1. 11(k i -ki-1),kl

i=0

and

2" 12 :5( )r-2~ C1"n12 D i~kl
k IIZk/kN nk[ 2  (N+I) rk IZk/k -kiI+K 4

k=O k=N4 +1 rk

N-i N 4[ [ It ek- - k-i-i ) ' k I1

= k=O

where i4 is some finite constant and N4 >.N3  is some integer. In view

of (3.25b) and the lemma Al the right-hand side of the above inequality is

finite, thus

rk llk/k-N - nk 12< a.s. (3.27)

The application of Kronecker lemma and the minimum phase condition (2.13)
rk

then implies lir sup -r- < a.s., as for the case of adaptive controller

based upon one-step ahead prediction, thus also establishing (3.18a) for

the case of the N-step ahead adaptive control. Substitution of (3.18a)

*in (3.25b) and (3.27) yields (3.18d) and (3.18e). Due to (3.9b) which

- also remains valid for the N-step ahead case, rk in (3.18c) can be

replaced by r Results C of the theorem are established exactly as in

Theorem 3.2, details being omitted here.

1

I.
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Remarks

1. As can be inferred from the proof of Theorem 3.1, condition

(2.14a) in the absence of the stability condition (2.11) is sufficient to

guarantee that the state estimation error Xk and a posteriori prediction

error zk/k converges to zero in strong sense at a rate 1/k.

2. For the convergence of zk+N/k however in the strong sense and

at a rate l/k, additional condition (2.14b) is required. Note that a

sufficient condition for (2.14b) is that lim sup (!Xkl is finite. Other

sufficient condition is where lim inf rk = and !lkI 2 or [1Xk1[2

does not increase faster than exponentially say.

3. The conditions (2.14) are also sufficient for the convergence

of tracking error to zero at a rate 1/k in case of N-step ahead adaptive

controllers.

4. For the convergence of prediction/tracking error to zero at a

rate 1/k it is not necessary that rk - O
D. In fact rk may very well

remain finite in the limit, thus the so-called persistency of excitation

condition [11] is not satisfied.

S. In the absence of persistency of excitation, rk k '  does

not converge to 0, however, the norm square of the parameter estimation

error 116k112 is of the order of 1/r k' Moreover if r k then

§k +e a.s. Further, for the convergence of parameter, condition (2.14b)

is not required.

6. For the parameter convergence it is not important that rk

approaches - at a certain rate say as k. In fact it may do so at a

very slow rate say, log log k. In the particular case when r k increases

at a rate k, then 116kl1 2 decreases as l/k.
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7. For the closed loop adaptive control, the regularity conditions

need interpretation. To develop some intuition for these, consider the

case of single-input single-output ARMAX model. Then

x = N- 1 ... Zk-n, Uk_ 1 ... uk-n, wk-1 ... ]k-n] which may be written as

k= (ZkI +k/kl (k-n +k-n,k-n-l)Uk- Ukn' k k-n1 "

In view of the minimum phase condition, uk is obtained as the output of a

stable system with inputs wk and (zk + Zk/kl). If k/k- may be shown

to converge to zero in some sense independent of the condition (2.14), then

(2.14) will be implied by a certain regularity condition on a vector

= [k-1"'" Zkn k- .... kn]. However the theory of this paper

shows only the convergence of Zk/k independent of (2.14). This problem

is solved fully in a subsequent paper where somewhat different convergence

analysis using a priori prediction error method and the truncation of

various estimates is used to establish the complete results for the adap-

tive control.

1i.

%.

I'

1'
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4. CONCLUSIONS

The paper has presented the analysis demonstrating under the usual

conditions of the literature, the convergence of the adaptive N-step ahead

prediction schemes based upon the standard least square algorithm for

parameter estimation, the convergence of the prediction error being under-

stood in the Cesaro sense. Under a regularity condition on the signal

model, it has been further proved that the convergence of the prediction

error and also that of the tracking error in the case of adaptive control,

is also in the strong sense, with the rate of convergence being asymptoti-

cally arithmetic. Under an additional persistency of excitation condition

of a trivial nature, the consistency of parameter estimates is also

established. The dependence of the rate of parameter convergence on the

"degree" of persistency of excitation, a scalar parameter of the signal

model, is also established. This parameter is just the trace of certain

matrix in the signal model and has the intuitive content of signal power.

For the prediction problem, the regularity condition is a very

natural condition on the signal model which is already assumed to be stable.

For the adaptive control problem, this condition needs an interpretation in

" - terms of the noise and the trajectory z*, the external inputs to the

closed loop controller. In a subsequent paper using a priori prediction

error method, the convergence analysis for the case of adaptive control is

established with the regularity condition expressed directly in terms of

the noise wk and the trajectory zk .

The convergence results of this paper have applicability to the adaptive

control of the general non-minimum phase plants of [22).

.4.

*1
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APPENDIX

Lemma Al. For an arbitrary E >0, with rk  defined as in (2.5c), one

obtains

o k r k0

Proof: Select an integer m such that E - and define N = 2m , then

the following straightforward manipulations yield the desired result,

L. l+g k-O (1+1/N)

k=O rk k=O r1

- (rk- rkl)
I (I+I/N)

k=0 r k

2mr (1-1/N)( 1/N I/N.
r k rk rk-1)

k=0 r (1+1/N)

2 1 I-IN 1-Nok=O [rklk1 1

< 2 m r- /N < C
* -1

Note that to obtain the second inequality above, we repeatedly use the

identity (a-b) = (v'a + vW)(ra- v); a,b > 0. V V V

Lemma A2. For the update of Pk given by (2.5c,d),

kk

k=CO rk

rkFurthermore, when lim sup -< -a.s., then one obtains
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(ii) lim x P x 0 a.s., lim x'P x =0 a.s.
k- kk k--w k k-l

(iii) lim x' A = 0 a.s. for all finite i,j

Proof: Results (i), (ii) follow from Reference [10]. To obtain (iii) use

the following identity (matrix inversion lemma) repeatedly.

Pk k+l k+ l Xk+l k k+lxk-l )  k+l k+l

For example, for i =2, i =0

xk+2PkXk x+2Pk+ik + (+2Pk+lXk+l) + iPk+lXk) l-k+lPk+lXk+l}

Now

^ ^ ^ I . .. .

kx+2Pk+1 k < x+ 2Pk+l k2 +kk+lk]

and

Ixk-2Pk +1k+ll 2 rxk+2Pk+lxk+2 X+lPk+lXk+1

Application of these inequalities and result (ii) yields (iii) for this

case. The result for general i and j is similarly obtained.

vvv
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